「事務作業に割く時間が4分の1になった」。ソフトバンクの新卒採用を担当する中村彰太人材採用部採用企画課課長が破顔する。同社は新卒採用のエントリーシートの合否判定に、米IBMの人工知能(AI)である「IBM Watson」を利用している。

ソフトバンクの人材採用部採用企画課の中村彰太課長(左上)、同 安藤公美氏(左下)、AIエンジニアリング部ソリューションエンジニアリング課の上園慎哉課長(右上)、AI事業推進部企画課の三上美紀氏(右下)
[画像のクリックで拡大表示]

 エントリーシートの合否判定システムの運用を開始したのは2017年5月29日。3カ月が経過して「事務の効率化だけでなく、仕事の質も高まったと感じている。エントリーシートの評価に個人の目線のブレが入らず、従来以上に客観性を持てるようになった」。中村課長はこう評価する。新たに確保した時間を内定者のフォローや大学訪問に利用している。

 新システムの導入前、エントリーシートを採用担当者の目で読んで評価する時間が課題になっていた。エントリーシート1枚当たり5分ほどを掛け、ソフトバンクの価値観との合致度を見ていた。採用活動のピーク期には1カ月当たり数千件のエントリーシートが届く。「10人で手分けをしても、毎日4~5時間はエントリーシートを読むためだけに使っていた」。ソフトバンクの採用企画課の安藤公美氏はこう打ち明ける。

 新システム導入によって、エントリーシート合否判定の業務フローは次のように変わった。まず、応募されたエントリーシートをAIに読み込ませる。合格と判定されたエントリーシートの応募者は面接に進む。AIに不合格と判定されたエントリーシートは採用担当が改めて読み込み、人の目で合否を再判定する。採用担当者が読むのは不合格分だけ。結果として4分の1になった。

 なお、面接前に面接担当者がエントリーシートを読む業務は変わっていない。効率化の対象は、エントリーシートを基に書類で合否判定するフローだ。

人と同じ作業ができるならブラックボックスでいい

 AIはどうエントリーシートを読んでいるのか。システムを開発した上園慎哉AIエンジニアリング部ソリューションエンジニアリング課課長は「実のところ、そこはブラックボックスでよく分からない。Watsonの中身はIBMが非公開にしている」と明かす。ブラックボックスでもチューニングの結果が現場の要求を満たしていれば問題がない、と人事部門とエンジニアで判断した。

 エントリーシートの合否を判定するシステムは、Watsonの「Natural Language Classifier(NLC)」という機能が中核を成す。自然言語で書かれたテキストを解析して、カテゴリー分けをする機能だ。ソフトバンクでは、これを利用してエントリーシートの記述内容は「合格」の特徴を持つか、「不合格」の特徴を持つかを分類している。

 「チューニングで試行錯誤を繰り返した結果、採用担当者が評価した場合と同じような結果で分類できるようになった」(採用企画課の安藤氏)。人間と同じ作業を再現できると確認した時点で、システムをリリース可能と判断した。

 AIの判断は100パーセント正しいわけではない。これは割り切った。大きく二つの要因がある。一つめは、初期段階のふるい分けにしか使わないことだ。仮に不合格相当のエントリーシートをAIが合格と判定しても、後のフェーズの面接で合否を判断できる。二つめは、AIが不合格と判定したエントリーシートを採用担当者が読む業務フローにしたことだ。合格相当のエントリーシートをAIが不合格と判定しても、人手による再判定で補正できる。

 ソフトバンクの目的は「合否判定のために人事部門がエントリーシートを読む事務作業を減らす」である。人の目で読むのがAIが不合格と分類したエントリーシートだけになれば、それだけ事務作業は減る。これで目的は達成している。

この先は会員の登録が必要です。有料会員(月額プラン)は初月無料!

日経 xTECHには有料記事(有料会員向けまたは定期購読者向け)、無料記事(登録会員向け)、フリー記事(誰でも閲覧可能)があります。有料記事でも、登録会員向け配信期間は登録会員への登録が必要な場合があります。有料会員と登録会員に関するFAQはこちら